

US05CPHY25

Prof. J. K. Baria

By Dr. Jagendra K. Baria Professor Of Physics V. P. & R. P. T. P. Science College Vidyanagar 388 120

Theory: The operation used in the calculus to obtaining the differentiation coefficient is known the differentiation.

For example, if $y = f'(x) = x^n$ then the differentiation co efficient: $\frac{dy}{dx} = nx^{n-1}$

Where, $\frac{dy}{dx}$ is known as the first order derivative and is denoted by y',

similarly, $\frac{d^2y}{dx^2}$ is the second order derivative and is denoted by y" and so on... To determine the derivative of any function f(x) at a given point x=a, the formula can be used to get an approximate answer, suppose f(x) is any function then the derivative can be calculated by,

$$f'(x) = \frac{1}{h} [f(x+h) - f(x)]_{x=a} \pm e$$
, Where, *h* - is step length and *e* - is

an error.

Error can be calculated by,

$$e = \frac{h}{2}[f''(x)], \text{ where, } f''(x) = \frac{1}{h^2} \left[f(x+h) - 2f(x) + f(x-h) \right]$$

2

Procedure:

- 1. Make tables using given equation for various methods.
- 2. Compute the value of given equations, by:
 - (i), Analytical method,
 - (ii), Numerical method, and
 - (iii), Graphical method.
- 3. Show and compare results and find out error.

Example:

Find the value of f'(x) for a given function $y = f(x) = x^2$ at x = 2 and h = 0.1.

(a). Analytical method:

Here, $y = f(x) = x^2$ is given, So, $y = f(x) = x^2$ then $y' = f'(x) = \frac{dy}{dx} = 2 x^{2-1} = 2 x$ But x = 2, $\therefore y' = f'(x) = \frac{dy}{dx} = 2 x 2 = 4$

(b). Numerical method:

Here, $y = f(x) = x^2$ and x = 2, h=0.1 are given,

Now, we know that,

$$y' = f'(x) = \frac{1}{h} [f(x+h) - f(x)]_{x=a} \pm e$$

1. $f(x) = x^2 = 2^2 = 4$
2. $f(x+h) = f (2+0.1) = f(2.1)$
But, $f(x) = x^2$, therefore, $f (2.1) = (2.1)^2 = 4.41$

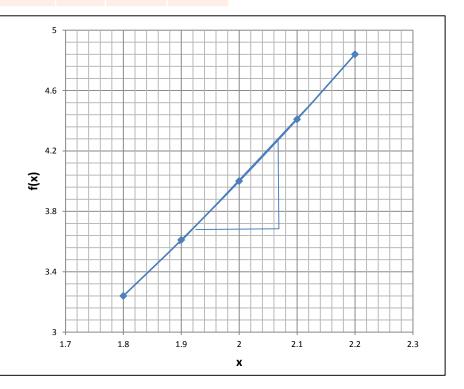
3. To find error, first of all we should find the value of f''(x).

(i)
$$f(x) = x^2 = 2^2 = 4$$
,
(ii) $f(x + h) = 4.41$ and
(iii) $f(x) - h = (2-0.1) = (1.9)$,
but $f(x) = x^2 = (1.9)^2 = 3.61$.

Now,
$$f''(x) = \frac{1}{h^2} \left[f(x+h) - 2f(x) + f(x-h) \right]$$

Substituting above values,

$$f''(x) = \frac{1}{h^2} [f(x+h) - 2f(x) + f(x-h)]$$


$$f''(x) = \frac{1}{(.1)^2} [f(4.41) - 2f(4) + f(3.61)] = 2$$

Now, error $e = \frac{h}{2} [f''(x)] = -\frac{0.1}{2} [2] = -0.1$
Let, $y' = f'(x) = \frac{1}{h} [f(x+h) - f(x)]_{x=a} \pm e$
 $y' = f'(x) \approx \frac{1}{0.1} [4.41 - 4]_{x=2} - 0.1 = \frac{0.41}{0.1} = 4.1 \approx 4$

(c). Graphical method: Make a table for given function andPlot a graph between x and

f(x) and find out the value of slope you will get the value of a function.

Table

Sl. No.	1	2	3	4	5
X	1.8	1.9	2.0	2.1	2.2
y = f(x)	3.24	3.61	4.0	4.41	4.84

RESULT

No.	Function f(x)	Value of differentiation by			
		Analytical	Numerical	Graphical	
		Method	Method	Method	
1.					
2.					
3.					

EXERCISE

$$y = x^3$$
 $y = (x+x^2)^2$ $y = 2x^3$ $y = e^x$ $y = \log_{10} x$ $y = (x^2+1)^3$

At x = 2 or any value is given